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The Importance of Mass Accretion Measurements
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objects into the lower-mass regime and
increase the number of UV excess
measurements for accreting brown dwarfs

bound to a star (also known as planetary mass R [Nl
companions). |
- Mechanisms of substellar accretion remain

unclear with various theories proposed such as (modified from Hartmann+2016)  (based on Aoyama+ 2018)
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iskwinjer Lowelocy accretes onto its surface and causes an accretion shock in its 2. Characterize accretion from both UV
oy stellar photosphere. continuum excess and line emission to
Accetion shock //4 Stellar and Planetary accretion paradigms differ in their shock understand formation mechanisms of pre-
processes because of where hydrogen line emission comes main sequence accretion. These
/|8 from. For the stellar accretion case, it possibly comes from the multiwavelength measurements can also
b Dusty disk infalling accretion column. For the planetary case, it possibly be used to estimate accretion rates and
i g - OO 530\?1“7 ey comes from the post-shock region where, unlike stars, the test scaling relations.
e Hartmann et, al. 2016 temperatures are still low enough to have bound hydrogen.
Data Reduction Pipeline Keck/LRIS Sample

Using a data reduction pipeline called Pypelt, we were able to Instrumental Setup
extract reduced 1D and 2D spectra for our desired object(s), as
well as perform flux calibrations.

- Keck/LRIS is the only ground-based facility with the sensitivity to
measure accretion rates as low as 1013 Mg/yr.
- We utilized the 400/3400 A (R ~ 700) blue side grism and the
400/8500 A red channel grating (R ~ 1000).
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We collected a sample of bound (blue) and isolated (green) substellar
objects with varying parameters such as mass, age, and magnitude, as
CIDA 1 well as photospheric templates/weak accretors (yellow).

Before Flux Calibrations
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Wavelength (Ang) Wavelength (A) KPNO Tau 12 Taurus 2+1 0.02 M9.0 24.7 21.9 19 -10.5
Fig 1: Published 1D Spectrum of CIDA 1 (young, low-mass star) being compared with our Pypelt KPNO Tau 6 Taurus 2+1 0.68 M85 2 106 22 108
1D and 2D speCtra' KPNO Tau 7 Taurus 2+1 0.93 M8.25 24.2 10.4 24 -11
. . Fl UX Ca l I bratlons . . MHO 5 Taurus 2+1 0.3 M6.5 20.5 16.7 60 -10.8
Our flux calibrations were performed using our standard star (PG0939+262) that is available
. . . . . . . ege e . CFHT 3 T 2+1 0.81 M7.75 / 20.9 30 <-12
within Pypeit and matched within their library to create a sensitivity function. e e
If our standard star is not recognizable, we are working on alternative methods that will allow for AU I R 21 S ShE - e e e
accurate calibrations.

. . Fig 3: Table of our Keck/LRIS 2021 and 2022 objects.
A Preliminary Result
DENIS J 1606-2056 Fig 4: A preliminary flux callbrat.ed spectrum of I?ENIS J1606-2056, an actively Takeawavs/Futu re Work:
accreting substellar object.  Our preliminary results show that we can detect excess line and
DENIS ] 1606-2056 (Full Spectrum) continuum emission for a range of substellar object masses.
e iy e * We plan continue our data reduction with our observed Keck/LRIS data
Nal from 2021-2022 of our six substellar targets from 3000-9000+ A.
S v K * Once we have flux-calibrated spectra of accreting brown dwarfs, we
M will use accretion models and scaling relations to determine accretion
rates, test empirical scaling relations, and compare bound and

isolated brown dwarfs.
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