Morphology of spirals in gravito-turbulent disks

Prakruti Sudarshan ${ }^{1,2}$, William Béthune ${ }^{1}$, Mario Flock ${ }^{2}$
${ }^{1}$ University of Tübingen, ${ }^{2}$ Max Planck Institute for Astronomy

Introduction

Young, massive gaseous disks are prone to gravitational instabilities (GI). GI-driven accretion can have implications on early grain growth and planet formation. Depending on the cooling time, gravitationally unstable disks can fragment or settle into a system of stable angular momentum transport by generating large-scale spiral arms. We study the spiral structure and the thermal saturation of GI under slow, parametrized cooling with 2D global simulations. We compare to theory and 3D global models without smoothing.

Disk evolution and stability criterion

-The interplay between heating from spiral-driven angular momentum transport and cooling causes the disk to settle into a steady state.
-Spirals are oriented with roughly constant pitch angles.

- The disk does not fragment for slow cooling
- Disk self-regulates to marginal stability with Toomre criterion $Q \approx 1$

$$
\begin{equation*}
Q=\frac{\kappa c_{s}}{\pi G \Sigma} \sim \frac{M_{*}}{M_{d}}\left(\frac{H}{r}\right) \tag{1}
\end{equation*}
$$

Figure 1: top: Normalized surface density after 1000 orbits at R_{0} for the model $q=0.2, \beta=10$ bottom: Density-weighted Toomre parameter Q for different disk-star mass ratios q.

Turbulent stresses and accretion

-The radial flux of angular momentum consists of contributions from both Reynolds [3] and gravitational stresses [4],

$$
R_{R \phi}=\Sigma\left(u_{R}-\left\langle u_{R}\right\rangle_{\Sigma}\right)\left(u_{\phi}-\left\langle u_{\phi}\right\rangle_{\Sigma}\right) \quad G_{R \phi}=\int \frac{g_{R} g_{\phi}}{4 \pi G} d z
$$

- Angular momentum transport is dominated by gravitational stress, and values of turbulent stress match the local prescription in [5] and 3D runs with a reasonable error margin
- An increase in Reynolds stresses in our higher-resolution models might indicate additional parametric features being resolved.

Figure 3: left: Turbulent stress a for models with different disk-star mass ratios q. right: Total turbulent stress for different resolutions for models with $q=0.2$. The faint, dashed lines indicate the Reynolds stress.

References

[1] Kratter K., Lodato G., 2016, ARA\&A, 54, 271

About me
Prakruti Sudarshan ("Kruti") PhD student at MPIA (she/her) sudarshan@mpia.de www.ufos-project.eu/

Methods

-GPU-PLUTO in 2D with a self-gravity module and a modified smoothing length $\varepsilon\left(h^{a}\right)$ to correct short-range forces. - res: $518 \times 512, \times 2-3$

- Models are scale free

Pitch angles and linear theory

The spiral pitch angle i is quantified by the radial and azimuthal wavenumbers (k, m) satisfying the linear dispersion relation

ϕ
Figure 2: Two-dimensional density fluctuations for the model $q=0.2, \beta=10$ The dashed diagonal lines fit the spirals and the slope of the family of line is the mean pitch angle $\tan (I)=0.232$.

- Linear fits of mean pitch angles are close to 3D models [2] with values ranging between $12-14^{\circ}$ for the least to most massive disks. - We found radial wavenumbers $k \approx k_{0}=\pi G \Sigma / \mathrm{c}_{\mathrm{s}}^{2}$ the wavenumber most strongly influenced by self-gravity according to linear theory.

Summary

- Models agree with theory in [5]: Gl unstable disks in the $Q \approx 1$ regime are well-modeled locally.
-Spirals show self-similarity and are constant in radius and time with wavenumbers of the order predicted by linear theory.

Future work

Explore the origins of the increased Reynolds stresses in simulations with a higher resolution. -Sensitivity to smoothing length and its effects in 2D (with smoothing) vs 3D global models.

