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Introduction
Young, massive gaseous disks are prone to gravitational instabilities (GI). GI-driven accretion can have implications on early grain 
growth and planet formation. Depending on the cooling time, gravitationally unstable disks can fragment or settle into a system of    
stable angular momentum transport by generating large-scale spiral arms. We study the spiral structure and the thermal saturation 
of GI under slow, parametrized cooling with 2D global simulations. We compare to theory and 3D global models without smoothing.
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    Methods

Pitch angles and linear theory
The spiral pitch angle i is quantified by the radial 
and azimuthal wavenumbers (k,m) satisfying the 
linear dispersion relation

Summary
• Models agree with theory in [5]: GI unstable disks 
in the Q ≈ 1 regime are well-modeled locally.

• Spirals show self-similarity and are constant in 
radius and time with wavenumbers of the order 
predicted by linear theory.

Disk evolution and stability criterion

• The  interplay between heating from 
spiral-driven angular momentum 
transport and cooling causes the       
disk to settle into a steady state.

• Spirals are oriented with roughly 
constant pitch angles.

• The disk does not fragment for        
slow cooling.

• Disk self-regulates to marginal sta-
bility with Toomre criterion Q ≈ 1
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• Profiles of Q in our models indicate 
that thermodynamics (radiative 
cooling in particular) controls the 
disk state.

Turbulent stresses and accretion
• The radial flux of angular momentum consists of contributions from both 
Reynolds [3] and gravitational stresses [4],

• Angular momentum transport is dominated by gravitational stress, 
and values of turbulent stress match the local prescription in [5] and  

  3D runs with a reasonable error margin.
• An increase in Reynolds stresses in our higher-resolution models might 
indicate additional parametric features being resolved.

Figure 1: top: Normalized surface density after 1000 orbits at R0 for the model q = 0.2, β = 10.
bottom: Density-weighted Toomre parameter Q for different disk–star mass ratios q.

Figure 2: Two-dimensional density fluctuations for the model q = 0.2, β = 10.
The dashed diagonal lines fit the spirals and the slope of the family of lines 

is the mean pitch angle tan(i) = 0.232. 
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• Linear fits of mean pitch angles are close to 
3D models [2] with values ranging between 
12–14˚ for the least to most massive disks.

• We found radial wavenumbers k ≈ k0= πGΣ/cs
2, 

the wavenumber most strongly influenced 
by self-gravity according to linear theory.

• GPU-PLUTO in 2D with a  
self-gravity module and 
a modified smoothing 
length ε(ha) to correct 
short-range forces.

• res: 518×512, ×2–3.
• Models are scale free.

Future work
• Explore the origins of the increased Reynolds 
stresses in simulations with a higher resolution. 

• Sensitivity to smoothing length and its effects 
in 2D (with smoothing) vs 3D global models.
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Figure 3: left: Turbulent stress α for models with different disk–star mass ratios q.  right: Total turbulent stress for different 
resolutions for models with q = 0.2. The faint, dashed lines indicate the Reynolds stress.
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