

HL Tau disk Ima partnership ${ }_{2015}{ }^{\text {Alma }}$ partnership

$\begin{array}{lllll}15 & 10 & \stackrel{5}{5} \underset{\text { RA offset (") }}{0} & -10 & -15\end{array}$

HL Tau is a Class I-II young star in Taurus surrounded by a protoplanetary disk (inset), the first found to possess concentric rings and gaps (Alma Partnership, 2015). It is associated to a collimated atomic jet seen in optical and IR lines (left panel, from Krist et al. 2008), by a warm wind revealed in H 2 lines (Takami et al. 2007) and a CO outflow.

\% The CO Outflow

The coaxial conical molecular outflow has been investigated within the ALMA-DOT project (Podio et al. 2020) in the $\mathrm{CO}(2-1)$ line at $0 . " 25$ resolution (Bacciotti et al. in prep.) The central panel illustrates the moment 0 map. The black ellipse indicates the disk. The white line has the same PA of the atomic jet and the magenta lines trace an aperture of +-30 deg. The right panel shows the moment 1 map.

Substructures are the imprint of detached flow layers

In each velocity bin the structures can be fitted with a set of ellipses Interpretation: the ellipses are cuts of multiple layers in $2 \mathrm{D}+\mathrm{v}$ space at a single radial velocity

Magenta box:
a given ellipse moves away from the source and increases in size from one channel map to the next. Interpretation: these ellipses are cuts at multiple radial velocities of a single layer in 2D+v space

Resulting foot points in the disk
Two independent estimates locate the origin of the layers in selected positions in the disk between 4 and 20 au from the star. Interestingly, the foot point of layer 1 lies beyond the first gap in the disk (Bacciotti et al., in prep.)

Foot points r_{0}

Layer $1 \quad 17.8$ au
Layer $2 \quad 11.0$ au
Layer $3 \quad 9.7$ au
Layer $4 \quad 7.0$ au
Layer $5 \quad 5.4 \mathrm{au}$
Layer $6 \quad 4.5$ au
(uncertainty 25\%)

Implication 1 : angular momentum extraction at the dead zone

Implication 2 : support to MHD instabilities as origin of rings \& gaps

The layered structure of the wind and the origin from the rings is in agreement with the predictions of models in which the ringed structure of the disk is produced by the development of non-ideal MHD instabilities.

From Suriano et
al. 2019

