

Early Planet Formation in Embedded Disks (eDisk): A first look at the Class 0 protostar IRAS 16253-2429

Yusuke ASO (KASI; yaso@kasi.re.kr),

N. Ohashi (ASIAA), J. Jørgensen (U. Copenhagen), J. Tobin (NRAO), W. Kwon (Seoul Nat'l U.), and eDisk Team

Introduction — protostar at the low-mass end

Protostars at the low-mass end are a key to bridge star formation and BD formation (< $0.08 M_{\odot}$). This mass range also includes the majority of stars (Fig. 1). We aim to obtain a picture of protostars at the low-mass end as a part of the ALMA large program "eDisk". A target, IRAS16253 (d = 139 pc), is suggested as such a protostar; however, its central mass is not well constrained in previous works

Figure 1. (Chabrier '05) Initial mass function (IMF) for young clusters. The vertical dashed line is at the boundary between hydrogen burning stars and brown dwarfs (BDs).

$(0.1 M_{\odot}; \text{Tobin}+'12, 0.02 M_{\odot}; \text{Yen}+'17, 0.028 - 0.12 M_{\odot}; \text{Hsieh}+'19).$

Figure 2. The 1.3 mm continuum images with different robust and taper parameters.

Results — 1.3 mm continuum (Fig. 2)

- (a) The deconvolved size is 15×6 au (P.A.=113°). $M_{gas} =$
 - $1.4 \times 10^{-3} M_{\odot}$ estimated from the flux density at T = 42 K.
- (b) The image at a higher angular resolution shows a secondary component at ~14 au from the center along the major axis.
 Results ¹²CO, ¹³CO, C¹⁸O J = 2 1 lines (Fig. 3)
- The ¹²CO outflow is inclined by $i = 65^{\circ}$ (Yen+'17).

• A velocity gradient along the major axis on the <100 au scale.

the UCM envelope and a ring at $R_{ring} = 28$ au.

Keplerian disk in ¹²CO (~16 au)

1.3 mm (~14 au)

Excess in

Envelope in C¹⁸O & ¹³CO (~140 au)

> Outflow in ¹²CO (~1400 au)

Conclusions (Fig. 6) — We have revealed a picture of the protostar IRAS165253 at the low-mass end. The length or radius of each structure is shown together.

Discussion — streamer and ring in the SO line (Fig. 5)

- The velocity of a structure extended to the east cannot be explained by the outflow or rotation. A possible interpretation is a ballistic streamer not on the midplane.
- Fig. 4(b) shows a linear velocity gradient in the SO line, implying a ring produced by accretion shock (*R*_{shock}~1.5*R_c*; Shariff+'22).

<u>References</u> Cassen & Moosman (1981), Icarus, 48, 353; Chabrier (2005), ASSL, 327, 41; Hsieh et al. (2019), ApJ, 871, 100; Shariff et al. (2022), MNRAS, 514, 5548; Tobin et al. (2010), ApJ, 712, 1010; Tobin et al. (2012), ApJ, 748, 16; Ulrich (1976), ApJ, 210, 377; Yen et al. (2017), ApJ, 834, 178

