Early Planet Formation in Embedded Disks (eDisk):

Possible Substructure Formation in an Embedded Disk of the Ced110 IRS4 system

Jinshi Sai (ASIAA) and the eDisk Team

Summary: The ALMA Large program Early Planet Formation in Embedded Disks (eDisk) aims to reveal when substructures in protoplanetary disks begin to form by observing 19 embedded disks at spatial resolutions of ~ 5 au and studying whether they show substructures. In this poster, we present a first-look result of the Class 0/l protostellar system Ced110 IRS4 from the eDisk survey. The 1.3 mm dust continuum tracing a dust disk of Ced110 IRS4A shows no clear gaps or rings, but exhibits bumps along the major axis, which can be interpreted as a shallow, annular structure at a radius of ~ 40 au. This might suggest a possible substructure formation in the embedded dust disk, although more investigations are required to confirm this as the 1.3 mm continuum emission could be optically thick.

1. Continuum of Ced110 IRS4A Disk

Intensity Profile along the Major Axis

Modeling of the Intensity Distribution

\checkmark No clear gaps or rings in the 1.3 mm dust continuum of Ced110 IRS4A
\checkmark Bumps along the major axis, which can be interpreted as a shallow, annular structure at r~40 au \checkmark Might suggest a possible substructure formation in the dust disk
\checkmark More observations at longer wavelengths are needed to confirm this, as the 1.3 mm continuum could be optically thick

2. Line of Ced110 IRS4A Disk

$\mathrm{C}^{18} \mathrm{O} \mathrm{J}=2-1$ Moment Maps

3. Arc-like Structure
$C^{18} \mathrm{O}=2-1$ Maps

SO $J_{N}=6_{5}-5_{4}$ Maps Color: ine moment maps
\checkmark Shocked gas caused by outflow?

Target: Ced110 IRS4

\checkmark Class 0/l protostellar system in the Cederblad (Ced) 110 region of the Chamaeleon I dark cloud [d~189 pc; 1]
$\checkmark T_{\text {bol }} \sim 68 \mathrm{~K}, L_{\text {bol }} \sim 1 L_{\text {sun }}$ [2]
References: [1] Galli et al. 2021, A\&A, 646, A46; [2] Ohashi \& the eDisk team, submitted to ApJ.

ALMA Observations

Continuum/Line	Frequency	Robust	Beam Size	Velocity Resolution	RMS
	(GHz)			$\left(\mathrm{km} \mathrm{s}^{-1}\right)$	$\left(\mathrm{mJy} \mathrm{beam}{ }^{-1}\right)$
1.3 mm continuum	225	0	$0^{\prime \prime} 054 \times 0^{\prime \prime} 035\left(-12.5^{\circ}\right)$	-	0.020
$\mathrm{C}^{18} \mathrm{O} J=2-1$	219.560354	1	$0^{\prime \prime} 153 \times 0^{\prime \prime} 107\left(-19.4^{\circ}\right)$	0.167	1.5
$\mathrm{SO} J_{N}=65-5_{4}$	219.949442	2	$0^{\prime \prime \prime} 178 \times 0^{\prime \prime} 127\left(-20.9^{\circ}\right)$	0.167	1.8

