Early Planet Formation in Embedded Disks (eDisk): A Compact but Structured Keplerian Disk and Large-scale Spiral Structures Revealed in *Han et al. (2023, in prep) the Class I Protostellar System IRAS 04169+2702*

Korea Astronomy and Space Science Institute UNIVERSITY OF SCIENCE & TECHNOLOGY

Ilseung Han (UST/KASI)

¹University of Science and Technology, ²Korea Astronomy and Space Science Institute, ³Seoul National University, ⁴Academia Sinica Institute of Astronomy and Astrophysics, ⁵National Radio Astronomy Observatory, ⁶Niels Bohr Institute Nagayoshi Ohashi⁴, John J. Tobin⁵, Jes K. Jørgensen⁶, and the eDisk team

Introduction

*ishan@kasi.re.kr

- Taurus B213 region (156 pc)
- M3 **Class I** protostar¹: $T_{bol} = 163$ K; $L_{bol} = 1.5$ L_{Sun}

Ilseung Han^{*,1,2}, Woojin Kwon³, Yusuke Aso²,

- **Counter-rotation** between disk and envelope²
- Potential **binary** system in infrared³
- More complicated than typical protostars

Figure 2. Radio spectra of the entire and central regions. The black points indicate the ALMA Band 6 (1.3 mm), VLA Q- (7 mm), K- (1.4 cm), C₁- (4.0 cm), and C₂-band (6.0 cm) data from the left. The dashed and dotted lines are the best-fit dust thermal emission and free-free emission curves. The red points denote the dust thermal emission only, without free-free emission.

- A. Continuum image (Fig 1)
 - IRAS 04169+2702 is **a single protostar**, not a binary.
 - All the VLA images show a single central peak.
 - A bean-shaped structure connecting two dust clumps
- B. Radio spectrums (Fig 2)
 - Dust thermal emission is dominant in the entire region, while free-free emission is dominant at the center in 7 mm.
 - Low spectral index (α_{mm}) implies grain growth to mm/cm⁴.

- **Velocity gradients** along the disk major axis (P.A. = 141°):
 - <u>C¹⁸O (Fig 3a), ¹²CO (Fig 3b)</u>, ¹³CO, SO, and H₂CO
- Edge and ridge methods by Spectral Line Analysis/Modeling (SLAM)⁵
 - $V_{\text{rot}} \propto R^{-p}$: (C¹⁸O; Fig 4a) p = 1.0 1.2, (¹²CO; Fig 4b) p = 0.4 0.6
- C¹⁸O: an infalling envelope under conservation of angular momentum
- ¹²CO: **a Keplerian disk** around a 1-M_{Sun} protostar

• S-shaped spirals are traced by the dust

continuum, C¹⁸O, SO, and H₂CO emissions. • Velocities increase closer to the protostar along the spirals: **an infall motion** • SO coincides with C¹⁸O: accretion shock ec) \rightarrow Streamers accreting material, rather than counter-rotation σ "The complexity of IRAS 04169+2702 will help us understand protostellar

evolution more realistically."

²Takakuwa et al. 2018, ApJ, 865, 51 ⁴Draine 2006, ApJ, 636, 1114 References ¹Ohashi et al., 2023, submitted ³Connelley et al. 2008, AJ, 135, 2496 ⁵Aso & Sai 2023, SLAM