Early Planet Formation in Embedded Disks (eDisk): A first high-resolution view of molecular line emission toward the Class 0 protostar L1527 IRS + Formation in Emp

Merel van 't Hoff^{1,}, John Tobin², Nagayoshi Ohasi³, Jes Jørgensen⁴, & the eDisk team

¹University of Michigan; mervth@umich.edu ²NRAO ³ASIAA ⁴University of Copenhagen

L1527 is a 1.3 L_{sun} [1] **Class 0 protostar** in Taurus (140 pc [2,3]), harboring a ~100au[4,5,6] edge-on (85°[7]) disk.

High-resolution (0.17") observations from the ALMA Large Program eDisk confirm a stellar mass of ~0.5 M_{sun}, as well as reveal evidence of a disk wind and a temperature increase at the disk-envelope interface [6].

Inner envelope

Position-velocity diagrams along the minor axis, 0.6" (85 au) north of source. C¹⁸O traces the Keplerian disk, while ¹²CO displays super-Keplerian velocities indicative of a disk wind.

Brightness temperature of optically thick ¹³CO emission (left) and the temperature derived from the H₂CO $3_{0.3}$ - $2_{0.2}/3_{2.2}$ - $2_{2.1}$ line ratio (right) for a redshifted (top) and blueshifted (bottom) velocity channel. Both measurements show a temperature enhancement along the midplane near the disk-envelope interface.

Asymmetries along the minor axis (due to optically thick dust) and the major axis. See also [8,9].

[1] Ohashi, N., Jørgensen, J.K., Tobin, J.J. & the eDisk team, 2023, under review; [2] Kenyon, S.J., Dobrzycka, D., & Hartmann, L. 1994, AJ, 156, 271; [4] Tobin, J.J., Hartmann, L., Chaing, H.-F., et al. 2012, Nature, 492, 83; [5] Aso, Y., Ohashi, N., Aikawa, Y., et al. 2017, ApJ, 849, **References:** 56; [6] van 't Hoff, M.L.R., Tobin, J.J., Ohashi, N., Jørgensen, J.K., & the eDisk team, 2023, under review; [7] Oya, Y., Sakai, N., Lefloch, B., et al. 2015, ApJ, 812, 59; [8] Ohashi, S., Nakatani, R., Liu, H.B., et al. 2022, ApJ, 934, 163; [9] Sheehan, P.D., Tobin, J.J., Li, Z.-Y., et al. 2022, ApJ, 934, 95.