Sequential Giant Planet Formation in a Substructured Disk

Tommy Chi Ho Lau¹, Tilman Birnstiel^{1,3}, Joanna Drążkowska^{1,2}, Sebastian M. Stammler¹, Cornelis P. Dullemond⁴ ¹LMU München, ²Max Planck Institute for Solar System Research, ³Exzellenzcluster ORIGINS, ⁴Heidelberg University Ch.lau@lmu.de

Introduction

- ALMA has revealed that rings are common in protoplanetary disks
- These rings were shown to be consistent with models of dust trapping in gas pressure maxima [6, 13, 14]
- In a previous paper [9], we have shown that such pressure bumps aid rapid formation of planetary cores by solving several problems at once:
- they enhance the local dust-to-gas ratio, thereby trigger planetesimal formation
- the accumulation of dust accelerates the growth of cores via pebble accretion
- they prevent migration, retaining the massive cores.
- Massive cores can form at ~ 100 au in 0.5 Myr as shown in [9]
- Continuing from the previous paper, we added gas accretion and gap opening

Method

We model the formation and evolution of planetesimals in an axisymmetric pressure bump

- The dust and gas evolution code DustPy [12] coupled to the parallelized symplectic direct N-body code SyMBAp [in prep.]
- Disk: $M_* = M_{\odot}$, $M_{\text{disk}} = 0.05 M_{\odot}$, $r_c = 100$ au, Z = 1%, $\alpha = 10^{-3}$, ISM-sized dust
- Prescribed Gaussian gap [6] at 5 au without pre-existing planet
- The IMF of planetesimals follows [7] with the small-scale turbulence $\delta = 10^{-5}$
- We include pebble accretion [10, 11], gas drag [1], e & i-damping, Type-I migration [8]
- Added to previous work [9]: gas accretion [4, 2] (const. $\kappa = 0.05 \text{ cm}^2\text{g}^{-1}$), planetary gap opening [5]

• Dust

pressure

triggers

formation

Results - Sequential planet formation

• Multiple planetary cores are formed at the bump

trapped

bump

planetesimal

at

and

Discussions

Pressure bump

- Enhanced pebble flux (10 100 times of typical value) for efficient growth
- Migration direction changes & traps planet

Slopes of the disk surface density and temperature (top). Migration timescale τ_a near pressure bump (bottom).

- and retained at wide orbit
- Architecture of planetary system
- Final mass set by depth of planetary gap
- Ice giant missing
- Disk dispersal before runaway gas accretion could stop the growth
- Opacity of gas envelope likely depends on local disk condition [3]
- Long-term instability likely occurs within Myr timescale
- The Kuiper Belt Objects can form from final generation of planetesimals
- -Small objects ($\lesssim 0.1 M_{\oplus}$) are formed at $\sim 30-50$ au
- -Outermost ice giant stirs KBOs into eccentric orbits and halts pebble accretion
- The observed eccentricity of the KBOs (\lesssim 0.1) is enough to prevent significant growth by pebble accretion

Conclusions

- In pressure bumps, growth from ISM-sized dust to giant planet takes only ~ 0.25 Myr at 5 au and 0.5 Myr at 100 au up to massive cores
- Planetary cores accrete gas near the pressure bump and remain at wide orbits
- Dust trapped at the new pressure bump formed by gap opening can trigger a new generation of planetesimal formation
- Further investigation on envelope opacity required to

• Cores grow by gas accretion and open gap • Pressure bump forms at a new location & traps dust

generation of

Acknowledgements

We acknowledge funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation) under grant 325594231 and Germany's Excellence Strategy – EXC-2094 – 390783311 and EXC 2181/1 – 390900948 (the Heidelberg STRUCTURES)

• Next

planets formed

• Two generations

Excellence Cluster). J.D. was funded by the European Union under the European Union's Horizon Europe Research & Innovation Programme 101040037 (PLANETOIDS).

	0401011	•		· · · · · · · · · ·	
form ice	e giants				

	References	[7] K. Gerbig and R. Li. arXiv e-prints, page arXiv:2301.13297, Jan. 2023.
	[1] I. Adachi, C. Hayashi, and K. Nakazawa. <i>Progress of Theoretical Physics</i> ,	[8] S. Ida, T. Muto, S. Matsumura, and R. Brasser. MNRAS, 494(4):5666–5674, 2020.
Two generations of	56(6):1756–1771, 1976. [2] B. Bitsch, M. Lambrechts, and A. Johansen. <i>A&A</i> , 582:A112, 2015.	[9] T. C. H. Lau, J. Drazkowska, S. M. Stammler, T. Birnstiel, and C. P. Dullemond. A&A, 668:A170, 2022.
giant planets formed in	[3] M. G. Brouwers, C. W. Ormel, A. Bonsor, and	[10] B. Liu and C. W. Ormel. <i>A&A</i> , 615:A138, 2018.
0 75 Myr	A. Vazan. $A\&A$, 653:A103, 2021. [4] J. Chambers, $An = 0.14(2) \cdot 102$ jun 2021	[11] C. W. Ormel and B. Liu. <i>A&A</i> , 615:A178, 2018.
	[4] 5. Chambers. ApJ, 914(2):102, Juli 2021. [5] P. C. Duffell. ApJ, 889(1):16, jan 2020.	[12] S. M. Stammler and T. Birnstiel. ApJ, 935(1):35, aug 2022.
	[6] C. P. Dullemond, T. Birnstiel, J. Huang, N. T. Kurtovic, S. M. Andrews, V. V. Guzmán, L. M. Pérez, A. Isolla, Z. Zhu, M. Bonisty, D. J.	[13] R. Teague, J. Bae, E. A. Bergin, T. Birnstiel, and D. Foreman-Mackey. ApJ, 860(1):L12, 2018.
	Wilner, XN. Bai, J. M. Carpenter, S. Zhang, and L. Ricci. ApJ , 869(2):L46, 2018.	[14] R. Teague, J. Bae, T. Birnstiel, and E. A. Bergin. ApJ, 868(2):113, 2018.