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Introduction
• ALMA has revealed that rings are common in protoplanetary disks

– These rings were shown to be consistent with models of dust trapping in gas pressure maxima
[6, 13, 14]

• In a previous paper [9], we have shown that such pressure bumps aid rapid formation of planetary
cores by solving several problems at once:
– they enhance the local dust-to-gas ratio, thereby trigger planetesimal formation
– the accumulation of dust accelerates the growth of cores via pebble accretion
– they prevent migration, retaining the massive cores.
– Massive cores can form at ∼ 100 au in 0.5 Myr as shown in [9]
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• Continuing from the previous paper, we added gas accretion and gap opening

Method
We model the formation and evolution of planetesimals in an axisymmetric pressure bump

• The dust and gas evolution code DustPy [12] coupled to the parallelized symplectic direct N-body
code SyMBAp [in prep.]

• Disk: M∗ = M⊙, Mdisk = 0.05M⊙, rc = 100 au, Z = 1%,α = 10−3, ISM-sized dust

• Prescribed Gaussian gap [6] at 5 au without pre-existing planet

• The IMF of planetesimals follows [7] with the small-scale turbulence δ = 10−5

• We include pebble accretion [10, 11], gas drag [1], e & i -damping, Type-I migration [8]

• Added to previous work [9]: gas accretion [4, 2] (const. κ = 0.05 cm2g−1), planetary gap opening [5]

DustPy SyMBAp
Σplts, Gas (Σ , H , η, T ), Dust (Σp, Hp, Stp)

Accretions (Σ̇ , Σ̇p), Planet Gap

Results - Sequential planet formation

• Dust trapped at
pressure bump and
triggers planetesimal
formation

• Multiple planetary cores
are formed at the bump
and retained at wide
orbit

• Cores grow by gas
accretion and open gap

• Pressure bump forms at
a new location & traps
dust

• Next generation of
planets formed

• Two generations of
giant planets formed in
0.75 Myr

Discussions
Pressure bump
• Enhanced pebble flux (10−100 times of typical value) for efficient growth
• Migration direction changes & traps planet
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Slopes of the disk surface density and temperature (top).
Migration timescale τa near pressure bump (bottom).

Architecture of planetary system
• Final mass set by depth of planetary gap
• Ice giant missing

– Disk dispersal before runaway gas accretion could stop the growth
– Opacity of gas envelope likely depends on local disk condition [3]

• Long-term instability likely occurs within Myr timescale
• The Kuiper Belt Objects can form from final generation of planetesimals

– Small objects (≲ 0.1M⊕) are formed at ∼ 30 − 50 au
– Outermost ice giant stirs KBOs into eccentric orbits and halts pebble

accretion
– The observed eccentricity of the KBOs (≲ 0.1) is enough to prevent

significant growth by pebble accretion

Conclusions
• In pressure bumps, growth from ISM-sized dust to giant

planet takes only ∼0.25 Myr at 5 au and 0.5 Myr at 100
au up to massive cores

• Planetary cores accrete gas near the pressure bump and
remain at wide orbits

• Dust trapped at the new pressure bump formed by gap
opening can trigger a new generation of planetesimal
formation

• Further investigation on envelope opacity required to
form ice giants
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