Evolution of silicate/volatile accretion disks originating from

solid planetary bodies around white dwarfs

Ayaka Okuya', Shigeru Idaz, Ryuki Hyodo?, Satoshi Okuzumi2 (1: NAOJ, 2: Tokyo Tech, 3: JAXA) E-mail: ayaka.okuya@nao.ac.jp

Context. Debris disks around white dwarfs are thought to originate from tidally disrupted planetary bodies and are responsible for metal accretion onto host WDs. Observations have
inferred that (1) WDs with disks tend to have accretion rates higher than that induced by Poynting-Robertson drag and that (2) their photospheres show refractory-rich composition.

Aims. We revisit (1) the high-accretion rate problem to consider the simultaneous reproduction of (2) for the disks originating from rocky bodies and ice-bearing bodies.

Methods. We perform 1D advection/diffusion simulations that consistently incorporate sublimation/condensation and back-reaction to particle drift due to gas drag in solid-rich disks.

Results. We find the mono-compositional silicate disks cannot reproduce the observed high accretion rate due to the quick re-condensation of diffused vapor beyond the sublimation
line. Alternatively, for the disks with volatile gas (e.g. water vapor), it enhances the silicate accretion to rates larger than PR-drag flux through gas drag. The refractory-rich accretion is

simultaneously reproduced when the initial volatile fraction of the disk is < 10 wt% because of the suppression of volatile accretion due to the efficient back-reaction of solid to gas.

Planetary materials in/around white dwarfs Results for mono-compositional silicate disks

¢ Surface density evolution of silicate dust & gas disks
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¢ Tidal disruption — Accretion through dust & gas disks (g, Farihi 2016)  (*can explain metals in short tsink ) The gas surface density outside the silicate

line exactly follows saturation vapor pressure.

A disk model is needed to link WD observations to planetary composition/evolution Accretion rate
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Results for silicate disks with volatile gas
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Silicate gas _ ¢ Surface density evolution of silicate gas/dust & volatile gas
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“To explain observed H fraction in WD atmospheres, Mvol should decrease by an order of magnitude
(Jura & Xu 2012)

— Possibility of H eScape due to XUV irradiation of WDs? (Okuya, Ikoma & Nakayama in progress)
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