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2D simulations of dust trapping by self-gravitating vortices

Self-gravity in 2D simulations

To mimic protoplanetary discs evolution, 2D simulations with self-
gravity must introduce a softening prescription of the gravitational
potential which is proportional to the gas scale height [1].

How correct is this approximation ? Can it be generalised when
dust is included ? [2]

From 3D self-gravity to 2D: the smoothing length approach
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Gas vortices

Large scale vortices are long-lived structures whose main interest is the
ability to capture and trap drifting solid particles [3,4]. Self-gravity plays a
key role in this scenario, since it affects the vortex stability [5] and allows
captured dust-grains to collapse to form planetesimals or a planet core.

How the smoothing length correction impacts this scenario ?

Global 2D simulations: RoSSBI3D [6] (no dust feedback)
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Self-gravity force correction (SGFC):
exact quantity
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Smoothing length force correction (SLFC):
approximation to the SGFC
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In practice, eﬂb/H =const. = 0.3-0.6

The standard smoothing length highly underestimates self-gravity
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Two fluid elements
separated by less than

1.5 Hg don‘t feel their
mutual gravity !

Standard approx.
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A space varying smoothing
length should be used instead

Force correction
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Generalisation of the smoothing length approach to bi-fluids

Dust self-gravity with respect to the

gas-to-dust scale height n
== =1 e n= —— =50
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Dust self-gravity _H, /
IS proportional to: d

Dust self-gravity is high for
thin discs (low viscosity)

Take-home messages

» Self-gravity underestimated
» Corretion requires a space varying smoothing length

 |f dust: two additionnal smoothing lengths
* Planet migration: adjustment factor G/H = (0.3 convenient ?

» Correction: clumps formation and gas envelope capture
* Flow circulation in coorbital region, lindblad resonances
* Turbulence ? Migration ? Impact of dust feedback ?
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1. Initial state: Gaussian vortex + unifrom dust distribution
2. Vortex splitting by a dust clump/filament self-gravity
3. Massive dust clump captures gas envelope

4. Global self-gravitating regime: « Gas and dust in horseshoe motion
 Lindblad resonances
* Migration ?



