MagAO-X direct detection of an accreting protoplanet candidate in the AS209 disk

Gabriele Cugno¹, T. Thanathibodee², P. Calissendorff¹, M. Meyer¹, S Edwards³, J. Bae⁴, M. Benisty^{5,6}, E. Bergin¹, M. De Furio¹, S. Facchini⁷, J. Males⁸, L. Close⁸, R. Teague^{9,10}, O. Guyon^{8,11,12}, S. Haffert⁸, A. Hedglen⁸, M. Kautz⁸, A. Izquierdo^{13,14}, J. Long⁸, J. Lumbres⁸, A. McLeod⁸, L. Pearce⁸, L. Schatz¹⁵, K. Van Gorkom¹

¹University of Michigan, ²Boston University, ¹Smith College, ⁴University of Florida, ⁵Observatore de la Cote ⁴/Azur, ⁶University of Grenoble Alpes, ¹University degli Studi di Milano, ⁸University of Arizona, ⁹Massachussetts Institute of Technology, ¹⁰Harvard & Smithsonian, ¹¹National Astronomical Observatory of Japan, ¹²National Institutes of natural Sciences of Tokyo, ¹³European Southern Observatory, ¹⁴Leiden Observatory, 15 Air Force Research Laboratory

4

-1

7

Ha ADI (PC

Background

AS209 is a young (1-2 Myr) star with a mass of 1.2 M_{\odot} and is surrounded by a well-studied protoplanetary disk (DSHARP, DARTTS, MAPS). Bae et al. (2022) identified a candidate circumplanetary disk (CPD), named AS209b. The candidate is detected in 13CO within the 12CO gap at ~200au and it is associated with dynamical perturbations of the disk gas.

The presence of a CPD would likely imply that material is falling from the circumstellar disk onto the protoplanet and its CPD, producing characteristic hydrogen recombination lines, like Ha.

Conclusions

- · We directly detected for the first time the outflow inferred by forbidden lines.
- The residuals show a protoplanet candidate at very high contrast. However, the candidate is not detected in the ADI reduction.
- The unknown disk extinction remains the largest challenge towards interpretation of the detected protoplanet candidate
- There is not sign of accretion at the location of AS209b
- Follow-up observations are necessary to reveal if the candidate is real

Cnt ADI (PC=15)

A companion candidate is detected at large

separation in the SDI reduction

-lα-Cnt SDI+ADI (PC

Why is the candidate not detected in the $H\alpha$ **ADI reduction?**

0.50

Figure 8. Ha 50 contrast limits and Ha Hgure 8. His 36 contrast limits and Hα luminosity limits of AS209 as a function of separation. Curves obtained with the SDI technique are shown with an orange line, while curves obtained with ADI PSF-subtraction without the continuum removal are shown with a blue line. Subtraction the center centers ware Subtracting the scaled continuum improves the contrast performance by up to 1-2-mag at short separations (≤0.4 arcsec). The detection of AS208c is reported with a black square (4o). Shaded regions represent the systematic uncertainty due to the speckle and residuals

0.75 1.00 1.25 1.50 1.75 2.00 Mass [M_j]