Planet formation in an evolving disk with disk winds and photoevaporation

Masahiro Ogihara1, Yasunori Hori2,3, Masanobu Kunitomo4, Kenji Kurosaki5, Eiichiro Kokubo3, Takeru Suzuki6, Alessandro Morbidelli7

PF-08-0003

1. Backgrounds/Disk evolution

- A.M. is supported by ERC grant: HolyEarth 101019380 • References
- ‣ Ogihara et al. (2015, A&A, 578) ‣ Suzuki, Ogihara et al. (2016, A&A, 596) ‣ Ogihara et al. (2018a, A&A, 612) ‣ Ogihara et al. (2018b, A&A, 615) ‣ Ogihara & Hori (2020, ApJ, 892) ‣ Ogihara et al. (2020, ApJ, 899) ‣ Ogihara et al. (2021, A&A, 648) ‣ Ueda, Ogihara et al. (2021, ApJL, 921)

3. Super-Earths/sub-Neptunes and hot/warm Jupiters: Atmospheres/Envelopes

6. Information

- MHD disk winds and photoevaporation affect the evolution of PPDs (Chapters 12, 13, 15, 16). • Specifically, MHD disk winds can change the gas surface density profile, and photoevaporation can cause rapid disk dispersal.
- Since the evolution models of PPDs can have a significant impact on planet formation (Chapters 15, 16, 17, 19, 20), in this study we investigate the formation of super-Earths/sub-Neptunes (SENs), hot/warm-Jupiters (HWJs), and the solar system's terrestrial planets using *N*-body simulations.
- The disk model used is shown in Fig.1, based on Suzuki+(2016) and Ogihara+(2020), which is very different from previous power-law disk models (eg, MMSN).

Download Poster in PDF

- In disks that dissipate slowly on timescales of a few Myr, SENs can accrete large amounts of atmosphere during the disk dissipation phase (Fig.5, gray). The amount of atmosphere exceeds 10% and is not consistent with the observed SENs (typically less than 10%).
- In disks in which the inner cavity opens quickly (0.1 Myr timescale) due to photoevaporation, SENs can avoid accretion of massive atmospheres (Fig.5, orange).
- The same is true for HWJs, where the inner cavity opens in a rapid disk dispersal, allowing a smaller amount of envelope accretion (Fig.6, orange). This explains the formation of HWJs with large metal mass fractions (eg, HD 149026b and TOI-849b) and the overall distribution of metal mass fractions (Fig.7; see also Chapter 26).

• Disks with altered density profiles can be applied to terrestrial planet formation. • Planetesimals of 1km can drift radially towards 1 au due to gas drag (Fig.8), and embryos of 1000km can avoid migration (similar to SENs) (Fig.9). • These may be useful for the formation of terrestrial planets, which are radially concentrated around I au.

4. Solar system's terrestrial planets: Radial mass concentration | 5. Conclusions

• Orbital period ratios formed after undergoing rapid migration do not match the observed orbital period distribution of observed $\frac{1}{2}$ SENs (Fig.4, dashed black), while those that avoid rapid migration Hill radii, escentricity; Chapters 23 and 24) are also consistent.

• Using power-law disk models, planetary embryos experience rapid inward migration (Fig.2). As a result, SENs form in a very compact configuration at the inner edge of the disk, captured in mean-motion resonances (MMRs).

• In disks with (near) flat surface density profiles due to disk winds, embryos can avoid rapid $\frac{x}{x}$ reproduce the observed orbital period ratios well (Fig.4, thick red). migration (Fig.3). As a result, orbital instability (or giant impacts) occurs during the disk $\hat{x}_x \hat{z} \hat{z}$ \hat{z} and the features (eg, size dispersion, orgital \hat{z} parametion \sim 10-30 mutual dissipation phase, and SENs form out of MMRs with some orbital separation.

- Disks evolving with disk winds and phohtoevaporation can have important effects on planet formation.
- We find that various features of SENs can be reproduced, and such

disks are useful to explain the metal mass fraction of HWJs and the radial mass concentration of terrestrial planets.

2. Super-Earths/sub-Neptunes: Migration, Period-ratio

1: TDLI/SJTU (ogihara@sjtu.edu.cn), 2: ABC, 3: NAOJ, 4: Kurume U., 5: Kobe U., 6: U. Tokyo, 7: OCA

Figure 2 (Ogihara+2015)

