g o°

' * 2010 2015
M- @®° Episodic Accretion in High-Mass Star Formation . '

The paradigm of high-mass star formation Heat wave and 6.7 GHz methanol maser relocation

eeply embedded, evolve fast, Prtostr I Methanol masers are relocated during

Young high-mass stars are rare, distant, c - DOY 33
and have strong radiative feedback. Therefore, their formation has been ™ Gﬂ HHHHH i (-:%?—> “* s the burst due to their radiative exci-

Q
—

: <4/ |5 tation’. VLBI maps of G358 revealed

g 50 »

a puzzle for quite some time. The recent detection of accretion bursts , ;
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in massive young stellar objects (MYSOs
that they form via disk-mediated accretion, like their low-mass siblings.

Most of the stellar mass is probably assembled within short periods of o
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maser configuration during the burst'
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vivid accretion. This causes powerful bursts that impact the protostellar e 3 observed flux-weighted mean radii to
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environment in various ways, as illustrated in the following. __.A I P - what is predicted by our model (mean
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MYSO outbursts observed so far. They last from a few months to more During star formation, a fraction of the ———

than a decade. Estimates of accreted masses range from >0.3 to more than infalling matter is not accreted but ejected - (b)
20 M jup. An asterisk marks an accompanying 6.7 GHz Class Il methanol 4 high speed by jets and outflows. For 0.2
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served in the NIRS3 burst. About one year
Light echos after the burst onset, its radio continuum
began to rise, possibly by the launch of an —0-2
ionized jet’. JVLA 7 mm (gray) and ALMA

3 mm observations (contours) confirmed 0.2 0 -0.2

K images of G323 at three epochs re-
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veal its light echo. Photons emitted
by the burst are scattered off ISM dust (i el by clearly showine the iet o (C ot al
arains into the line of sight. The ex- is model by clearly showing the jet expansion (Cesaroni et al., in prep.).

tra path delays their arrival time. These

echoes differ from the ring-like ones Shocking X-rays from NIRS3!

of supernovae because of the MYSO High accretion rates can induce bloating of

MYSOs, leading to low effective tempera-
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disk/envelope structure. The burst of
NIRS3 led to a biconical light echo.
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tures®. Therefore, generation of X-rays in

a photosphere similar to that of low-mass
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Afterglows & time-dependent radiative transfer stars seems unlikely. However, Chandra ob-
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servations during the burst revealed X-ray

5 — o] Pre-, mid- and post-burst SEDs of . .
: S purs . emission that was previously absent. Most

_— — postaune G358 with spectral coverage of the — . ikelv. it is due to wind shocks related t
W SOFIA FIFI-LS instrument. About 0 R c S Gue o wind shocks Telated Lo T
- dio jet activity. CSC 2.1 X-ray sources (blue
£ 15 months after enhanced accre- . , , .

S . . circles) are shown in a KK-band image centered on NIRS3 (red circle).

g tion stopped, the FIR fluxes still ex-

3 - ceeded the preburst level. This ther-

g mal afterglow is caused by the sub- Prospects

_B | o, luminal speed of energy transfer at p The loss of FIR access due to SOFIA shutdown is a serious drawback.
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Alum] high dust optical depths®. » The reanalysis of SOFIA data using time-dependent radiative-
Normalized luminos- 1.0 G323 (face-om) transfer models will refine burst parameters, as well as information
ity light curves of the _ 5. | NIR on the protostellar environment and viewing geometry.
G323 model for var- S o | . :l; »  JWST studies will focus on the burst impact on the disk/envelope.
ious spectral ranges £ ™ bolometric
show that MIR and B o4 —— accretion rate
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