Mass-Dependent Kinematics in Orion Nebula Cluster as Tracers of Formation and Evolution
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Overview: Star Cluster Formation and Evolution
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Background: The kinematics of star clusters, where most stars are born, provide valuable insights in

the processes of their formation and evolution. The Orion Nebula Cluster (ONC), being the closest 15
(~389 pc) massive star cluster with active star formation is an ideal target for such a study.

Hydrodynamical simulations suggest that stars can form in dense gas filaments via gravitational S 4
fragmentation!. We hope to unveil if the stars in the ONC are born in this way. '
Aims: Analyze the mass-dependent kinematics around the ONC core, which is packed with young stars
and experiencing most of the interactions within the cluster; Verify the gravitational fragmentation 3o S t
star formation mechanism by observing the correlation between relative velocity and stellar mass. |
Sources: A total number of 246 low-mass stars? within 4’ (0.45 pc) of the ONC core, including sources >3
observed by Keck3, Hubble Space Telescope (HST)?%, and SDSS/APOGEE~ °. R | | :
Instrument: K-band infrared spectrum using NIRSPEC with Adaptive Optics (NIRSPAO)’ 8 on Keck II. S36m00° - 35m30° 00° 34m30° S"35m30° 20° 10 00°
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Data: NIRSPEC data, APOGEE data, proper motion measurements®. Fig. 1. Sky map of sources near the ONC core in previous studies and this work.
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Method: Spectrum Forward Modeling and Mass Interpolation

1. Spectra are reduced using a modified version of i o L
] ) ] g (o OB {1 T e I S Y I I O LU AW MM R (NI ORI IN Y 15 - 1 Myr Uncertainty
NIRSPEC Data Reduction Pipeline (NSDRP). | N '
2. Spectra of each source are normalized and median 2 " Ak W Y
: : : ® . | ]J L W OX TR
combined to reduce white noise. =0 | i =
3. Each spectrum is forward modeled by the PHOENIX 5 s W‘ 3 @ 06
stellar model® to fit for stellar, telluric, and g | | — = 047
instrumental parameters using the Spectral _ o TV T N TN N ; —— - Comneaspucim 02
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4. Masses are then interpolated from multiple stellar S L R Teff (K)
evolutionary modelst>!> using the effective
temperature assuming a age of 2+1 Myr?®, Fig. 2. The spectrum and best-fit atmospheric model of HC2000 172 in order 33. Fig. 3. Mass interpolation based on

Baraffe stellar evolutionary model*3.

Results: A Test of Star Formation Theory
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suggests that the cluster s - - "

undergoing a counter-clockwise . Right Ascension | Fig. 6. Measured velocity dispersion (red) and virial Fig. 7. 1-D velocity
rotation, confirming the finding in Fig. 4. Left: 3-D velocities of sources. Arrows represent proper motions equilibrium model prediction (gray) as a function of dispersion as a function of

2 previous study?. and colors represent rafullal veIo.C|t|es. Right: Direction distribution separation from.the ONC center. Sourcgs are binngd stellar mass. Sources are
between transverse velocity and displacement from the ONC center. with equal spacing or equal numbers in a group in binned equally grouped.

According to hydrodynamical left and right column respectively.

simulations, stars can form from
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oravitational fragmentation in gas 10 — KkoEs sath percentie | | Fig. 6 shows the measured velocity dispersion as a function of separation
filaments infalling towards the . ;g o] | —— (e from the ONC center: opy = 1.71 1+ 0.09 km/s, opp = 2.08 +0.11
clusterl. The high velocities of ~§ i 12z, l LA o1 | km/s, ogy = 2.98+0.15 km/s, and oyp = 2.32+0.08 km/s. The
et mo;/in ctars ecludes s s | ¥ il ke | | - 2 | prediction of the virial equilibrium model!2 which assumes a virialized
5 . P - E A z | TSR N ONC is: Oeguiibrium = 1.73 km/s. This implies that the ONC is not yet

further accretion from the gas. i T | 3 . iR _ e o . . o _
0.1 ¢ : P T 0.05 fully virialized yet. This is crucial as the negative trend in Fig 5. will be

Therefore, high velocity stars will f SRR f A

. . e R=- 012004 washed away if it were virialized.
have a lower mass. This negative o - : L 0.00
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correlation is observed in the

final mass (M) Mass (V) We further prove that the downward trend is not a result of energy
ONC, indicating that the initial Fig. 5. Left: Relative velocity w.r.t. center of mass vs mass at the end

equipartition due to gravitational interactions, as the velocity dispersion
mass of forming stars indeed of a hydrodynamical simulationt®. Right: Observed relative velocity WI.|| be inversely corrglated to the square ro.ot of mass, or equ.lvaloently a
depend on their kinematic state. w.r.t. 0.1 pc neighbors vs mass interpolated from the MIST model. minus one-half slope in log-log scale, which is not observed as in Fig. 7.

Discussion and Takeaways

A discrepancy is identified between NIRSPAO and APOGEE  5200- . 03 N — — — — —
effective temperatures, as Fig. 8 shows, possibly due to bias ™]
between K- and H-band. Fig.9 shows the simulation on how _ = n B B A A
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offset. The simulated affect from binarity is shown in Fig. 10. = 0] .- " T D R aeaa— A
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A binary fraction of =65.8% is required to address the higher  so- T e ‘s =& Original MIST Mode! e | 15 i e
value of measured oyy, inconsistent with literature values. 3600 - S S Median Difference: 545.99 K L —=- Zero Slope L
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Takeaways: Fig. 8. Discrepancy in Teff Fig. 9. Slope of linear fit as a function Fig. 10. Simulated and measured 1-D velocity
ONC is supervirial. Stars form in gravitational fragmentation. between NIRSPAO and APOGEE. of separation limits of neighbors. dispersion assuming different binary fractions.
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