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As I am one of the LOC co-chairs of this conference,
I may be too busy to enjoy discussion with you.
Please give me your questions and comments on
Mattermost or by email. I hope you enjoy the
conference as well as your stay in Kyoto.

Background
Self-gravity is one of the key physical processes in star and
planet formation. As the Poisson equation is elliptic and the
information propagates instantaneously, it is not trivial to
achieve good performance and scalability on modern massively
parallel supercomputers.
We have implemented a new self-gravity solver based on the
full multigrid method on Athena++. The code is publicly
available on Github (https://www.athena-astro.app/).
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Accuracy and Performance

The Poisson equation of self-gravity:
∇2𝜑 = 4𝜋𝐺𝜌

Its second-order discretization with spacing ℎ:
𝜑𝑖+1,𝑗,𝑘 + 𝜑𝑖−1,𝑗,𝑘 + 𝜑𝑖,𝑗+1,𝑘 + 𝜑𝑖,𝑗−1,𝑘 + 𝜑𝑖,𝑗,𝑘+1

+ 𝜑𝑖,𝑗,𝑘−1 − 6𝜑𝑖,𝑗,𝑘 = 4𝜋𝐺ℎ2𝜌𝑖,𝑗,𝑘

In the traditional V-cycle Multigrid (MGI) (a), a smoothing
operator such as the Red-Black Gauss-Seidel smoother is
applied on all the levels with different resolutions to damp
errors of all wavelengths coherently.
In Full Multigrid (FMG) (b), we use the coarsest level
solution as the initial guess for finer levels and improve the
solution using the V-cycle Multigrid repeatedly. Once it
reaches the finest level, we apply the V-cycles until a
convergence threshold is satisfied. This method is superior
as it does not require any initial guess.
Our implementation supports AMR. At level boundaries,
we use the mass-conservation formula (Feng et al. 2018)
to ensure consistency between the levels.
The code is efficiently parallelized using Athena++’s
TaskList dynamic execution model.

↑ Left: convergence of sin waves on uniform grid
Right: convergence of binary potential on AMR

(a) error to the analytic solution, (b) error to the fully
converged solution, (c) defect, (d) convergence.

Blue: FMG, Orange: MGI with naïve initial guess
• Full Multigrid always outperforms traditional Multigrid
• Error to the analytic solution quickly saturates
• Second-order accuracy is achieved in all the cases

← Convergence behavior
of the AMR binary test.
Left: Distribution of defect
Center: error to the

analytic solution
Right: error to the fully-

converged solution
•Error to the analytic
solution saturates quickly
•Persisting noises near
level boundaries cause
slow convergence

↑ Left: Weak-scaling performance on uniform grid
Right: Performance of the AMR binary test.

Blue: FMG + 10 V-cycles, Orange: FMG alone,
Red: MHD, Gray: FFT
• FMG scales well and as fast as MHD on uniform grids.
•Multigrid scales better than FFT because computational
complexity of Multigrid is 𝑂(𝑁), while FFT is 𝑂(𝑁𝑙𝑜𝑔𝑁)

• Scaling on AMR is not excellent, but still is reasonable
compared to other public codes (e.g. FLASH).

AMR simulation of collapse
of a rotating magnetized
molecular cloud core with
AMR and barotropic EOS →
• First core formation
• Angular mom. transport
by magnetic braking

• Bipolar outflows
• Consistent results with
previous simulations

• ~ 5,000 core hours, or
<1.3 days using 160 cores

Summary:
• New Multigrid self-gravity solver for Athena++
• It can be applicable to practical star formation simulations
• Extension to other physics (Radiation, CR) is possible
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