ALMA has spatially resolved over 200 annular structures in protoplanetary discs, many of which are suggestive of the presence of planets. Constraining the mass of these putative planets is quite degenerate for it depends on the disc physical properties, and for simplicity a steady-state is often assumed whereby the planet position is kept fixed and there is a constant source of dust at the outer edge of the disc. Here we argue against this approach by demonstrating how the planet and dust dynamics can lift degeneracies of such steady-state models. We focus on a suspected planet at R ? 86 au in the well-known protoplanetary disc around the ~ 7 Myr-old star HD 163296. By running gas and dust hydrodynamical simulations post-processed with dust radiative transfer calculations, we first find steady-state disc and planet parameters that reproduce ALMA continuum observations fairly well. For the same disc mass, but now allowing the planet to migrate in the simulation, we find that the planet undergoes runaway migration and reaches the inner disc in ~ 0.2 Myr. Further, decreasing the disc mass slows down planet migration, but it then also increases the dust's radial drift, thereby depleting the disc dust faster. We find that the opposing constraints of planet migration and dust drift require the disc mass to be at most 0.025 solar masses, must less massive than previously estimated, and for the dust to be porous rather than compact. We propose that similar analysis should be extended to other sources with suspected planetary companions.